

The contribution of ²²²Rn and ²²⁰Rn bearing building materials to indoor radon.

Paola Tuccimei ¹, Mauro Castelluccio ², Gianfranco Galli ³, Carlo Lucchetti ², Michele Soligo ¹

¹ Università "Roma Tre", Italy ² "La Sapienza" Università di Roma ³ Istituto Nazionale di Geofisica e Vulcanologia

Outline

- Sources of indoor radon
- The contribution of building materials to indoor radon
- The scale model room of Università «Roma Tre»
- Experiments
- 1. The effect of inner and outer covers on indoor radon
- 2. Modelling the influence of air introduction versus air extraction in the model room
- Future developments

Sources of indoor radon: ²²⁰Rn

Lithoid ignimbrites have always been used to build edifices in central Italy (picture of Caprarola town, Viterbo). *Final Conference LIFE-Respire*, July 8th 2021 - Villa Aurelia, Roma

Preliminary work: building materials available in building materials store in Caprarola

The contribution of building material

Lithoid ignimbrite from Vico apparatus

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

Exhalation rates

²²²Rn Bq m⁻² h⁻¹ 5.91 ± 0.14

²²⁰Rn Bq m⁻² h⁻¹ 6434 ± 494

THE SCALE MODEL ROOM: ~ 0.1 m³

 $T_{1/2}$

²²⁰Rn increase up to equilibrium in a closed system

Experimental set-up

EXPERIMENTS. 1. The effect of inner and outer covers on indoor radon

Experimental condition	Test #	²²² Rn	²²⁰ Rn	T (°C)
Not covered	1	770 ± 50	523 ± 203	18-24
Covered with external coatings	2	10623 ± 137	530 ± 124	20 - 26

External covers enhance ²²²Rn levels, but not ²²⁰Rn

RADON LEVELS ARE EXPRESSED IN Bq / m3

Experimental condition	Test #	²²² Rn	²²⁰ Rn	T (°C)
Covered with external coatings	2	10623 ± 137	530 ± 124	20-26
Covered with external coatings and internal shield of plasterboard	3	13154 ± 211	230 ± 103	25 - 31

The addition of an internal shield of plasterboard does not influence ²²²Rn levels, but cut ²²⁰Rn

Experimental condition	Test #	²²² Rn	²²⁰ Rn	T (°C)
Covered with external coatings	3	13154 ± 211	230 ± 103	25 - 31
As previous test, but with a doblue coat of paint	4	11400 ± 155	bdl	23-27
The addition of a double coat	of pain	t slightly rea	luces 222Rn	levels, but
strongly 220Rn	bo	dl stands for	below det	ection limit
Experimental condition	Test #	²²² Pn	220 Die	
Experimental condition		ΠΠ	KN	T (°C)
As previous test, but with a doblue coat of paint	4	11400 ± 155	bdl	T (°C) 23-27

Removing the external coating strongly reduces ²²²Rn levels, without effects on ²²⁰Rn

Summary of the first set of experiments

 External covers should be removed from buildings in order to promote ²²²Rn exchange and dilution; No effect on ²²⁰Rn

Internal covers strongly cut ²²⁰Rn, with a limited effect on ²²²Rn

EXPERIMENTS. 2. The influence of air introduction versus air extraction in the model room

THE MODEL ROOM WAS INTERNALLY COVERED WITH THE PLASTERBOARD

Summary of the second set of experiments

- Air introduction is more effective than air extraction to reduce indoor radon in small rooms with high radon levels
- The higher the air flow, the stronger the ²²²Rn decrease

A modified version of Fick's second law was used to describe the radon diffusion through the wall.

INDOOR OUTDOOR

$$\frac{dC(x,t)}{dt} = D\frac{d^2C(x,t)}{dx^2} - v\frac{dC(x,t)}{dx} + g - \lambda C(x,t)$$

where:

5 cm

C(x, t) is the radon concentration (P to pores of the building material D is the radon diffusion plied only to x is the distance as applied out covers x is the distance was applied out of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied only of the wall to the outdoor direction This was applied on the wall (m/s) g is a constant (s⁻¹)

GRAPHICAL SOLUTION OF THE MODELLING

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

GRAPHICAL SOLUTION OF THE MODELLING

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

AIR INTRODUCTION

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

GRAPHICAL SOLUTION OF THE MODELLING

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

Final Conference LIFE-Respire , July 8th 2021 - Villa Aurelia, Roma

NO VENTILATION

INNER COATINGS Reduce ²²⁰Rn

OUTER COATINGS Favour ²²²Rn accumulation

AIR INTRODUCTION

Experiments at highest flow rate (0.82 L min⁻¹), without outer coatings

INNER COATINGS Reduce ²²²Rn

With the plasterboard88 %Without the plasterboard33 %

FUTURE DEVELOPMENTS – EXPERIMENTS TO CHARACTERISE SINGLE MATERIALS

Material to be tested

Thank you for your attention !!!